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Investigation of ion temperature gradient turbulence in gyrokinetic models shows that some of the
key features of reduced models associated with saturation by nonlinearly excited damped
eigenmodes carry over to gyrokinetics. For nonzonal wavenumbers the frequency spectrum in
gyrokinetics is broader by a factor of 10 than simple nonlinear broadening of the most unstable
eigenmode. The width, including its variations with wavenumber and temperature gradient scale
length, closely tracks accessible stable eigenmodes as approximated by a gyro-Landau fluid model
for the same parameters. Cross-phase probability distribution functions �pdfs� and fluxes show
nonlinear behavior consistent with stable eigenmodes in nonzonal wavenumbers contributing to
30% of the fluctuation energy. Phase pdfs and cross-phase time histories show that multiple
eigenmodes �in addition to high frequency geodesic acoustic modes �GAMs�� are a significant part
of the ky =0 spectrum. Two possible roles of zonal modes in saturation are proposed. First, known
nonlinearly accessible stable zonal eigenmodes �in addition to zonal flows and GAMs� are discussed
and it is suggested that if these eigenmodes are excited they may be the primary arbiter of saturation.
Second, zonal modes may facilitate energy transfer from unstable eigenmodes to stable eigenmodes
at finite ky. © 2009 American Institute of Physics. �DOI: 10.1063/1.3079779�

I. INTRODUCTION

Plasma microinstabilities that saturate by spectral trans-
fer can do so through either of two channels. In one, the
eigenmode of the instability, which uniquely characterizes
the fluctuation structure in the linear growth phase, remains
in force as energy is transferred to small wavelength. There,
the growth rate of the unstable eigenmode turns negative
because of dissipative processes, and the energy carried by
the cascade is removed from the spectrum. In the other, the
nonlinearity transfers energy to stable-eigenmode branches
whose damping saturates the instability. This can occur even
at the same wavenumbers at which the instability is driving
the turbulence. Two well known stable eigenmodes are zonal
flows and geodesic acoustic modes �GAMs�. The role of
zonal flows in saturating turbulence has been extensively
studied and is most often explained as a shearing process
rather than a direct energy sink �in the absence of collisional
damping�. In this paper we are concerned with excitation of
other damped eigenmodes both at zonal �ky =0� and nonzonal
�ky �0� wavenumbers and their role as direct energy sinks in
saturation. These often neglected stable eigenmodes are roots
of the linear dielectric. Their growth rate is zero or negative
for all wavenumbers. When stable eigenmodes are excited to
finite amplitude the fluctuation structure of the unstable
eigenmode is nonlinearly mixed with that of stable eigen-
modes at each wavenumber, producing a nonlinear eigen-
mode. These two saturation outlets can be represented as
manifolds, with one for each eigenmode of the dielectric.
Figure 1 represents the manifolds as planes of two-
dimensional �2D� wavenumber space and depicts a situation
in which there is one unstable eigenmode and one stable

eigenmode. Energy transfer between regions of positive and
negative growth rates in the unstable manifold is usually a
cascade, connoting a process with multiple steps. Transfer
between manifolds can access damped wavenumbers in a
single step. Despite the direct nature of this channel, a survey
of theoretical work on saturation shows that damped eigen-
modes have not been treated as saturation-producing energy
sinks,1 except in a few cases.2,3

Valid numerical solutions of the dynamical equations
capture both saturation mechanisms. However, which
mechanism dominates makes a large difference in how the
turbulence is understood conceptually, in how important
quantities are estimated, and significantly, in the approxima-
tions used in numerical and analytical calculations. For ex-
ample, if saturation involves only the unstable manifold, the
rate of growth or damping at wavenumber k can be calcu-
lated using linear theory. If saturation involves stable mani-
folds, growth and damping are intrinsically nonlinear, i.e.,
they depend on the level of each stable eigenmode. More-
over, if energy transfer to damped eigenmodes is a significant
saturation mechanism, these modes must be properly re-
solved in numerical modeling, and their physics must be ac-
curately represented. Approximations such as mixing length
rules and quasilinear fluxes implicitly assume that stable
manifolds are unimportant in saturation.

Recent work has shown that stable eigenmodes saturate
trapped electron mode �TEM� turbulence and ion tempera-
ture gradient �ITG� turbulence in reduced, local 2D fluid
models.2,3 These models allow calculation of a complete
fluctuation basis set from the linear eigenmodes. Projection
of initial value evolution onto this basis shows that the
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stable-eigenmode fluctuations initially decay with their linear
damping rate until reaching a threshold, after which they
grow exponentially through direct mode coupling with fluc-
tuations on the unstable manifold �as depicted in Fig. 1�.2 At
finite amplitude they radically change dissipation, spectra,
transport fluxes, and statistics.2–5 It is important to know to
what extent this behavior carries over to other systems, in-
cluding those with comprehensive models. Following the
prescription of Refs. 2 and 3 it is possible to determine
which stable eigenmodes are excited and what role they play
in saturation energetics for other fluid systems. Efforts in this
regard are underway.6 In kinetic theory the zeros of the di-
electric must be determined, of which there may be an infi-
nite number, and these roots must be incorporated into satu-
ration analyses. In gyrokinetic computation the issue of
stable-eigenmode dynamics is complicated by an emphasis
on initial value computation at the expense of solving eigen-
modes.

Stable-eigenmode roots of the linearized gyrokinetic
equations are nevertheless being identified. The most famil-
iar of these are zonal flows and GAMs.7,8 New classes of
eigenmodes, especially at ky =0, are being found.9 Zonal
flows have been studied the most extensively.10 Because they
are essentially undamped11 in the absence of collisions, zonal
flows are ineffective as finite-amplitude-induced energy
sinks in collisionless regimes like those in this study. In
simulations with finite collisionality, it has been shown that
collisional damping of zonal flows can strongly regulate
fluctuation amplitude and transport.12 Zonal flows are most
often thought to affect saturation through their shearing.13

Shearing is a process that enhances the transfer to short
wavelength damped fluctuations.14 In terms of the manifold
picture of Fig. 1, zonal flows represent a second manifold
with no damping that acts as a catalyst to move energy on the
first manifold to short dissipated wavelengths. However, this
mechanism is less effective than commonly believed. Zonal
flows are driven by nonlinear mode coupling; hence their
shearing rate is comparable to instability growth rates, a fea-
ture observed in both experiment and simulation.15,16 Most
theoretical treatments of shear suppression indicate that
shearing rates comparable to growth rates yield a moderate
amplitude reduction, not a reduction of an order of magni-
tude or more, see Refs. 17 and 18. Instead, our interest here

is with damped eigenmodes that represent a potentially sig-
nificant sink of fluctuation energy at both zonal and nonzonal
wavenumbers. In the local 2D fluid models saturation is
caused by stable eigenmodes that are neither zonal flows nor
GAMs, although a region of their manifolds contains zonal
wavenumbers �ky =0�. In these systems the anisotropy of the
drift frequency enhances spectral transfer to ky =0.19,20 Any
damped eigenmode that takes up this energy will provide a
saturation sink, whether it is a GAM or something else. In
this regard it is important to maintain a distinction between
zonal flows and zonal wavenumbers �i.e., ky =0�. Zonal flows
satisfy ky =0, but so do other eigenmodes for that part of the
spectrum. Spectral properties associated with ky =0 thus in-
volve a combination of zonal flows and other eigenmodes. If
the latter are damped they can saturate instability in a way
that zonal flows cannot.

This paper investigates whether stable eigenmodes are
involved in the saturation of ITG turbulence as modeled by
GYRO.21 This is a difficult question and the results presented
here represent an initial effort. The primary difficulty is that
GYRO is an initial value code. It is possible to determine only
the growth rate of the fastest growing unstable eigenmode
�from amplitude e-folding in the linear instability phase�.
This calculation yields no information about other eigen-
modes. The gyrokinetic code, GENE,22,23 is equipped with an
eigenmode solver24 which can resolve the full spectrum of
unstable and stable eigenmodes and future work is planned
to utilize this capability to verify and expand the results pre-
sented here. However, this work is limited to initial value
gyrokinetic solvers and as a result we develop other less
direct methods of establishing the presence of stable eigen-
modes in saturation. To compensate for diagnostic limita-
tions these methods utilize benchmarked cases for compari-
son with other comprehensive solvers. Limitations and
uncertainties make it important to develop multiple tests for
inferring stable-eigenmode activity.

We examine three tests of stable-eigenmode activity ap-
plied to fluctuations in the saturated state. All gyrokinetic
simulations used for this study employ flux tube geometry.
Fluctuation data are taken at the outboard midplane and thus
are a function of radial �kx� and binormal �ky� wavenumbers.
The first test involves analysis of the width of the frequency
spectrum in saturation. The width is compared to that ex-
pected if only the most unstable eigenmode is present and to
linear frequency spreads determined by solving for the
eigenmodes of the fluid equations of GLF23.25 This analysis is
applied to the CYCLONE �Ref. 26� base case for which it is
established that the growth rates of GLF23 and GYRO are in
close agreement. The second test involves statistical and time
history analysis of phase angles in the cross correlation of
potential and internal energies. Like the first test, this looks
at the spread of angle away from that of the fastest growing
eigenmode and considers how much spread is required to
implicate stable eigenmodes. The third test involves com-
parisons of the quasilinear and nonlinear heat fluxes. It looks
for a systematic reduction of the nonlinear flux relative to the
quasilinear approximation, indicating a nonlinear state that
mixes the unstable eigenmode with stable eigenmodes. For
the diagonal flux element, stable eigenmodes give a negative

FIG. 1. �Color online� Diagram representing two saturation mechanisms: �1�
Spectral transfer to high-k dissipative wavenumbers, represented by the up-
per plane, and �2� nonlinear transfer to damped linear eigenmodes, repre-
sented by the lower plane.
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contribution to the flux and therefore reduce it relative to the
quasilinear value. All three tests give evidence that stable
eigenmodes are excited in GYRO. To inform the search for
stable-eigenmode activity in GYRO we briefly review the re-
sults of the reduced ITG model where stable eigenmodes are
observed directly.

Two of these tests are also applied to fluctuations at
zonal wavenumbers. In addition to GAMs, there is evidence
that other eigenmodes are active at ky =0. These eigenmodes
may be robustly damped for zonal wavenumbers where spec-
tral power peaks. These wavenumbers also show the stron-
gest modifications to cross correlations. These measurements
lead to speculation regarding the role of zonal modes in re-
lation to damped eigenmodes. Because of the high fluctua-
tion intensity at zonal wavenumbers, it is plausible that
damped zonal eigenmodes play a key role in saturation as a
direct energy sink. In addition, it is also possible that zonal
modes are catalysts for driving damped mode excitation at
nonzero binormal wavenumbers. This is the topic of current
research. This paper is organized as follows. Section II
briefly describes stable-eigenmode physics in the reduced
ITG model as it relates to tests described herein and tests that
might be carried out later. These tests are applied to nonzonal
wavenumbers in Sec. III, with subsections on the frequency
spectrum, transport fluxes, and phase probability distribution
functions �pdfs�. Stable eigenmodes in zonal wavenumbers
are examined in Sec. IV. This section emphasizes phase pdfs
and cross correlation evolution. Conclusions are given in
Sec. V.

II. STABLE EIGENMODES IN A LOCAL FLUID MODEL

To help interpret GYRO results, we review stable-
eigenmode effects in a reduced system where stable eigen-
modes can be exactly calculated and observed directly. The
following results, which we only summarize in this paper,
are presented in detail in Ref. 3. The reduced system is based
on a fluid model for the slablike branch of ITG with equa-
tions for vorticity, ion pressure, and parallel ion flow.27 In the
local limit where the parallel wavenumber k� is taken to be
constant the model retains a slab-ITG-like linear growth rate
that is proportional to �k�

2�1+�i� /��2/3, where �i is the ratio
of density gradient to temperature gradient scale length and
�=Te /Ti.

3 While this model is very simple compared to com-
prehensive models, its nonlinearities are similar and include
E�B advection of vorticity, pressure, and parallel flow. This
system does not have a zonal flow but does have a margin-
ally stable eigenmode with zonal and nonzonal wavenum-
bers. There is also a damped eigenmode that nearly forms a
complex conjugate pair with the unstable eigenmode.

With three fields �pressure, parallel flow, and potential,
with vorticity as the Laplacian of the potential� the three
linear eigenmodes can be solved directly from the linearized
equations of motion. Because the linear eigenmodes form a
complete basis, the original evolution equations can be trans-
formed to the basis of the linear eigenmodes, yielding dy-
namical equations for the amplitude of each eigenmode. We
denote each amplitude by � j with j=1, 2, or 3. The evolution
equations in the eigenmode basis are diagonal in the linear

coupling, by construction, while each amplitude is driven
nonlinearly by a linear combination of the three nonlineari-
ties of flow, pressure, and vorticity advection. Because each
field is a linear combination of the three eigenmodes, the
nonlinearities have quadratic couplings of each eigenmode
with itself and with each of the other two eigenmodes. In
Fourier space these couplings involve the products
�i�k��� j�k−k��. Let the linearly unstable eigenmode be �1.
During the linear growth phase when �1�exp��t�, terms
proportional to �1�k���1�k−k�� in the nonlinearities of the �2

and �3 equations drive exponential growth at effectively
twice the linear growth rate. In evolution from an infinitesi-
mal initial state this nonlinear exponential growth dominates
as soon as the nonlinear terms are large enough to exceed the
exponentially decaying initial value transient.4

The nonlinear growth of a stable eigenmode saturates at
a level determined from the balance of net transfer into the
eigenmode and its linear damping. If the mode is marginal,
its amplitude is set by a balance of nonlinear terms. A
damped eigenmode has a noticeable effect on instability-
driven turbulence if it produces a noticeable drain on the
unstable eigenmode. This occurs if the rate of transfer from
unstable to stable manifolds is comparable to the rate of
transfer within the unstable manifold.3 For the reduced
model, both stable eigenmodes have a noticeable effect ac-
cording to this criterion. The following is essential behavior
observed from numerical solutions of the initial value prob-
lem that reveals the presence of stable eigenmodes at a level
sufficient to affect saturation.

�1� Amplitude evolution and frequency spectrum: In the re-
duced model both the spectral transfer rates involving
stable eigenmodes and the stable-eigenmode saturation
amplitudes are comparable to those of unstable eigen-
modes. In fluid models the complete basis set of eigen-
modes provides a unique decomposition of the original
fields into eigenmodes for observation. This is the way
in which eigenmode amplitudes are tracked in Fig. 2 of
Ref. 3. If knowledge of the complete basis is not avail-
able other unique observables must be sought. The
wavenumber spectrum of itself is not such an observ-
able. A shift of the peak away from the wavenumber of
the most unstable eigenmode represents a significant
transfer of energy away from that wavenumber but does
in general reveal whether the wavenumbers of the new
peak are on the unstable or stable manifolds. A better
spectrum observable is the frequency spectrum at fixed
wavenumber. In the linear growth phase when ampli-
tudes are dominated by the unstable eigenmode, a
unique frequency associated with the instability can be
derived from simulation data. If stable eigenmodes are
insignificant in saturation, the frequency spectrum will
peak at this mode frequency, with a finite width gov-
erned by nonlinear transfer rates. Nonlinear transfer
rates must be comparable to the linear growth rate to
balance the instability. If the peak spreads significantly
beyond this width, stable eigenmodes are implicated. If
there is information about the frequencies of stable
eigenmodes, these can be marked on the spectrum and
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energy at that frequency can be ascribed to that eigen-
mode provided it is the only eigenmode at that fre-
quency, and other eigenmodes are separated by more
than the nonlinear spread.

�2� Transport flux: If stable eigenmodes at nonzonal wave-
numbers are a significant energy sink for saturation,
transport fluxes will deviate from the quasilinear values.
If the transport matrix is primarily diagonal, the damped
eigenmodes will drive inward fluxes, reducing the over-
all flux from the quasilinear value. For the reduced
model this is evident in Fig. 2 of Ref. 3. The flux is very
bursty but remains lower than the quasilinear value both
during and between bursts. Because the temperature and
density gradients are fixed in this model, the burstiness
is associated with long time sloshing between the eigen-
modes. Therefore, there are times when the flux is quite
close to the quasilinear value and times when it is quite
far. If damped eigenmodes at zonal wavenumbers play a
significant role in saturation, then the magnitude of the
net impact of damped eigenmodes will be underesti-
mated by tests that apply solely to nonzonal wavenum-
bers, such as the comparison of quasilinear and nonlin-
ear fluxes. This is because zonal wavenumbers make no
contribution to anomalous transport fluxes associated
with nonlinear E�B advection. Since spectral transfer
to zonal wavenumbers of damped eigenmodes is gener-
ally enhanced over transfer to other wavenumbers in
systems with drift frequencies,4 the difference between
true and quasilinear fluxes will significantly underesti-
mate the effect of damped eigenmodes.

�3� Cross phases: The cross correlations between fluctuating
fields are complex valued. Because eigenmodes specify
a unique complex proportionality between Fourier am-
plitudes of different fields, the angle in the complex
plane of each cross correlation assumes a unique value
for each eigenmode. If the unstable eigenmode domi-
nates saturation, a pdf of the angle should be close to a
delta function at the angle of the unstable eigenmode.
The time history should show small fluctuations about
this angle. If the pdf is broadened, the cross phase as-
sumes other values and reflects the presence of eigen-
modes other than the most unstable mode. In the re-
duced model the cross phase evolves intermittently as
seen in Fig. 4 of Ref. 3. There are periods when the
cross phase fluctuates about a fixed angle that is not the
angle of the unstable eigenmode and periods when it
rotates through a range of values.

�4� Nonlinear growth rate: A direct but less familiar measure
of stable-eigenmode effects on saturation is the nonlin-
ear growth rate.2,3 This measures the rate at which en-
ergy is extracted from gradient free energy sources and
fed into the fluctuations. This is a measure of a funda-
mentally dissipative process, unlike spectral energy
transfer, which is generally conservative. At infinitesi-
mal amplitude the nonlinear growth rate asymptotes to
the linear growth rate. If this quantity changes at finite
amplitude the fastest growing unstable eigenmode no
longer reflects the true distribution of sources and sinks
responsible for saturating the instability. The presence of

damped eigenmodes manifests itself as regions in wave-
number space for which the nonlinear growth rate is
smaller than the linear growth rate.

The nonlinear growth rate is ideal for observing stable-
eigenmode activity in initial value computations because it
can be calculated from time histories without a priori knowl-
edge of the eigenmode spectrum. It is given by

�nl�k� =
1

U�k�
�dU�k�

dt
�

nc
, �1�

where U�k� is a spectral energy density constructed from a
linear combination of the squares of all fluctuating fields
relevant to the nonlinear evolution of the system, and
dU�k� /dt �nc is the part of the energy rate of change that is not
conserved. The nonconserved energy change is given by

�dU�k�
dt

�
nc

= 	
i

ai
Ai
��k��dAi�k�

dt
�

l
+ Ai�k��dAi

��k�
dt

�
l
� .

�2�

where Ai�k� is the amplitude of a fluctuating field, dAi /dt �l
represents the linear terms of the amplitude evolution equa-
tions, and ai are the coefficients used in constructing U�k�
=	iaiAi

2�k�. The coefficients ai must be chosen so that
	kU�k� is conserved by the nonlinearities of the system �non-
linear invariance� and �nl must reduce to the linear growth
rate at infinitesimal amplitude. These constraints generally
specify a unique linear combination of the component fluc-
tuation energies. In fluid systems dU�k� /dt can be con-
structed from the appropriate energy moments of the evolu-
tion equations. Imposing nonlinear invariance, this reduces
to a sum of quadratic correlations associated with free energy
and allows �nl to be calculated from time histories without
taking a time derivative. For the reduced ITG model,

�k
nl =

k� Im�pu�
� + ky�̂ Im��p�

U�k�
− �D, �3�

where

U�k� = ��1 + k2����2 + �u��2 + �p�2� , �4�

�̂= �1+�i� /�, �D is the net dissipation of viscosities and col-
lisional diffusivities, and �, u�, and p are Fourier amplitudes
of potential, parallel flow, and pressure.3 Figure 2 shows �nl

as a function of kx and ky computed from a numerical solu-
tion of the saturated state in the reduced model. For compari-
son the linear growth rate is shown alongside. The nonlinear
growth rate shows regions of wavenumber space with net
energy sinks where linearly there are energy sources. This
indicates that in these regions the loss of energy from the
damping of the nonlinearly excited damped eigenmode ex-
ceeds the linear growth rate. Consequently, stable eigen-
modes play a major role in the saturation of the reduced
model. The nonlinear growth rate is distinct from a recently
developed diagnostic for GYRO based on spectral energy
transfer rates.28 A gyrokinetic diagnostic for �nl will be an
element of future studies. For the present effort we focus on
the observables �1�–�3� of the above list.
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III. NONZONAL WAVENUMBERS

A. Frequency spectra

A linear eigenmode is defined by its frequency �eigen-
value� and its phase relations �eigenvector�. If multiple
modes are excited to significant amplitudes in a turbulence
simulation, one would expect their corresponding mode fre-
quencies to appear in the frequency spectrum. Such is the
case with the GAM whose linear mode frequency is readily
identified in the nonlinear spectrum. The transport model,
GLF23, was used to examine the frequencies and phases of
multiple linear eigenmodes. GLF23 is based on an eight-field
gyro-Landau fluid model, yielding eight modes. Any fluid
representation is a projection of a kinetic equation onto a set
of fluid variables, constructed by taking moments of the ki-
netic equation and making approximations to close the mo-
ment hierarchy. Thus, the eight modes accessible to GLF23

should be conceptualized as representative of the modes ac-
cessible to the gyrokinetic equation, albeit a finite set. Pre-
sumably, if the model is valid, these modes capture most of
the turbulent dynamics.

ITG growth rates from GLF23 have been successfully
benchmarked against several other models, particularly in
standard parameter regimes.25,29 The GLF23 transport code
contains an eigenvalue solver that solves for all eight eigen-
values and eigenvectors. The transport model uses only up to
two unstable modes, but there is no reason to dismiss,
a priori, the stable eigenmodes as being physically relevant.
One must be cautious, as the fluid closures break down near
poles of the gyrokinetic equation and results with extremely
large growth rates should be viewed with skepticism. This is
a drawback of any fluid model, and for the parameters
examined, spurious modes can seemingly be readily identi-
fied and dismissed. In this work, the mode information
from GLF23 is used to gain intuition and for qualitative
comparison.

For CYCLONE-base case parameters, GLF23 produces the
unstable ITG mode and five stable modes whose frequencies
cluster around the ITG mode frequency and whose damping
rates are on the same order of magnitude as the ITG growth
rate. Two other very high frequency �105 times larger than
the ITG frequency�, heavily damped modes were dismissed.
It is unlikely that these modes are physical and even if they
are, their large damping rates would prohibit them from im-
pacting the dynamics in a significant way.3

The linear mode frequencies from GLF23 closely match
regions of intensity in the nonlinear frequency spectrum
from a corresponding GYRO simulation. In all regions of k
space, the frequencies of the five damped modes fall in areas
of significant intensity in the nonlinear frequency spectrum
as is evident in Fig. 3 �as a function of ky� and Fig. 4 �as a
function of kx�. Figure 3 shows that both the spread in linear
mode frequencies and the width of the nonlinear spectrum
are roughly proportional to ky. In addition, the damped mode
frequencies seem to be representative of the nonlinear spec-
trum, defining a range of excitation.

Although there is a dearth of theory in the literature re-
garding frequency spectra, it is commonly believed that the
linear growth rate provides an estimate of the expected width
of a spectrum.30 The basic argument is as follows. On aver-
age, nonlinear energy transfer must balance the linear energy
input due to the instability in order to saturate turbulence.
This requirement sets an upper limit on the extent to which
nonlinear interactions can modify temporal dynamics and
thus broaden a frequency spectrum.

For all wavenumbers examined, the width of the fre-
quency spectrum is much larger than the linear growth rate.
This is difficult to explain without invoking the presence of
other accessible normal modes with characteristic frequen-
cies represented in the nonlinear spectrum. A scan in tem-
perature gradient scale length LT was examined in order to

FIG. 2. �Color online� Comparison of linear �left� and nonlinear �right� growth rates from the three-field fluid model simulation. The nonlinear growth rate
shows dissipation at wavenumbers that are linearly unstable.

022311-5 Role of stable eigenmodes in gyrokinetic models… Phys. Plasmas 16, 022311 �2009�

Downloaded 25 Feb 2009 to 128.104.166.133. Redistribution subject to AIP license or copyright; see http://pop.aip.org/pop/copyright.jsp



determine the dependence of spectrum width on the linear
growth rate. Figure 5 shows the spectra for the wavenumber
ky =0.2, kx=0 for a series of LT values. The central vertical
line represents the ITG mode frequency and the solid line on
the frequency axis shows the linear growth rate. The spectra
for all values of LT have comparable widths in spite of an
increase by a factor of 3 in the growth rate. A corresponding
scan of GLF23 runs shows that the width of the spread in
damped mode frequencies varies only weakly with LT and
remains close to the widths of the nonlinear spectra. The

width of frequency spectra can also be affected by Doppler
shifting due to zonal flows. However, the LT scan also elimi-
nates Doppler shifting as the primary cause of the width of
the spectra since the zonal flow velocity increases strongly
with R /LT as well. Figure 6 shows a plot of the width of the
nonlinear frequency spectra in comparison with the spread in
damped eigenmode frequencies, linear growth rate, and
zonal flow velocity for the wavenumber kx=0 and ky =0.2.
The nonlinear spectrum scales well with the spread in
damped eigenmode frequencies but does not scale with ei-

FIG. 3. �Color online� Comparison of the nonlinear frequency spectrum from GYRO simulation data �left� with the frequencies of the ITG mode and five
other stable modes �right� as calculated from GLF23 as a function of ky, plotted on the same plot range. The frequencies of the stable modes closely match
regions of intensity in the nonlinear spectrum for a wide range of wavenumbers.

FIG. 4. �Color online� Comparison of the nonlinear frequency spectrum from GYRO simulation data �left� with the frequencies of the ITG mode and five other
stable modes �right� as calculated from GLF23 as a function of kx, plotted on the same plot range. The frequencies of the stable modes closely match regions
of intensity in the nonlinear spectrum for a wide range of wavenumbers.
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ther the linear growth rate or the zonal flow velocity.
It should be noted that GLF23 parameter scans show that

the spread in linear mode frequencies is only weakly depen-
dent on gradient scale lengths and safety factor but strongly
dependent on magnetic shear s. The frequency spread is
much narrower for low values of s. However, this behavior is
not observed in the nonlinear spectrum of GYRO simulations
which still show wide spectra similar to higher s spectra. If
the low s nonlinear spectrum is to be interpreted in terms of
available linear eigenmodes, one must assume that there are
important eigenmodes at low s that are not captured by
GLF23’s eight-field fluid closure or that GLF23 does not cap-
ture the correct shear dependence of the damped eigenmode
frequencies.

B. Transport fluxes

Excitation of damped eigenmodes generally causes a re-
duction in transport fluxes. Their effect on energy balance
and transport can roughly be conceptualized as the opposite
of an instability, i.e., they dissipate energy from the fluctua-
tions, allowing gradients to steepen. In order to illustrate the
effect of damped eigenmodes on heat flux, we write the elec-
trostatic potential and pressure fluctuations as a superposition
of six modes corresponding to the six modes defined by
GLF23,

� = �1 + �2 + �3 + �4 + �5 + �6, �5�

p = R1�1 + R2�2 + R3�3 + R4�4 + R5�5 + R6�6. �6�

FIG. 5. �Color online� Frequency spectra for an LT scan. The central vertical lines represent the ITG frequency, the outlying vertical lines show the width of
the spectrum taken for Fig. 6, and the horizontal bar on the axis represents the linear growth rate. In all instances the frequency spectra are much wider than
the linear growth rate. In addition, the widths of the spectra remain similar throughout the scan in spite of an increase in the growth rate by a factor of 3. The
spread in damped mode frequencies varies little with LT and closely matches the width of the nonlinear spectra as seen in Fig. 6.
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The heat flux component at wavenumber k is proportional to
the ��p cross correlation,

Q�k� = ky Im���k��p�k�� . �7�

The Ri are complex coefficients defining the correct ��p
cross phases for each eigenmode. The heat flux can also be
expressed in the eigenmode basis as

Q�k� = ky Im�	
i

Ri�i
2 + 	

i,j�i

Ri�i� j
�� . �8�

The �i
2 are positive definite so the direction of the flux

contribution from these terms depends only on the coeffi-
cients Im�Ri�. The contribution of cross terms is more diffi-
cult to characterize. This is the topic of the current study with
the reduced three-field ITG model, where it appears that
�with some interesting exceptions� these terms largely cancel
out so that the flux is dominated by the �i

2 terms. Damped
mode phase data are available from GLF23 and indicate that

three of the five damped modes would give an inward con-
tribution to heat flux. The unstable mode gives an outward
component of flux, as do the two most weakly damped
modes, albeit at a significantly reduced level in comparison
to the unstable mode. As a result, damped mode excitation
causes a net reduction in heat flux in comparison with the
transport that would result solely from the instability.

In order to estimate the magnitude of the effect of
damped eigenmodes on transport, comparisons are made be-
tween the quasilinear flux and the true flux. Quasilinear
theory estimates fluxes assuming that the dynamics are gov-
erned solely by the unstable mode. A quasilinear flux is con-
structed by multiplying the �2 intensity from a nonlinear
simulation by the linear response function from a linear
simulation, as represented by Eq. �9�. For an initial value
code, a linear simulation can only identify the fastest grow-
ing mode so all quantities �phases, frequencies, etc.� derived
from the data are associated with the instability. As a result,
this procedure amounts to replacing p in the heat flux expres-
sion with the estimate p=R1� which is accurate only if the
fluctuations lie almost exclusively on the unstable manifold.
This amounts to keeping only the R1�1

2 term in Eq. �8�,

Qql�k� = ky Im�R1�k��2�k�� . �9�

In order to construct a quasilinear flux, the response
function R1 is taken from a linear GS2 �Ref. 31� run and is
used in conjunction with data from a nonlinear GYRO simu-
lation. GS2 is capable of initializing a linear simulation for a
range of radial wavenumbers, whereas GYRO is limited to
kx=0 for linear simulations. The response function is plotted
in Fig. 7. Using data from these two codes should not be a
problem, as GS2 and GYRO have been extensively bench-
marked for CYCLONE-base case parameters. Comparisons be-
tween GS2 and GYRO were made for kx=0 wavenumbers and
the quasilinear fluxes agree to within 2%.

The quasilinear flux is a good estimate of the true flux in
the linear phase before nonlinear energy transfer excites
damped eigenmodes. This corresponds to t�80LT /vT in Fig.

FIG. 6. �Color online� Plot of the width of the nonlinear frequency spectrum
�as shown by the vertical lines in Fig. 5� at kx=0, ky =.2 in comparison with
other quantities that might determine the width of the spectrum. The linear
growth rate and the zonal flow velocity increase significantly over the LT

scan. However, the widths of the nonlinear spectra vary little and are
matched closely by the spread in eigenmode frequencies.

FIG. 7. The linear response function P /� from linear GS2 data for kx=0 as a function of ky �left� and ky =0.2 as a function of kx right.
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8, which shows the two fluxes as functions of time starting
from infinitesimal initial conditions. In the saturated state,
the quasilinear flux consistently overestimates the true flux
as would be expected when damped eigenmodes are excited.
This is seen in Fig. 8 after t�80LT /vT and in a longer time
history of the two fluxes in Fig. 9. The ratio of total true flux
to quasilinear flux is, on average, 0.64. At kx=0, the ratio is
0.79 and the quasilinear estimate grows increasingly poor as
kx increases, as seen in Fig. 10.

These comparisons indicate that damped eigenmodes
have an effect of approximately 36% on transport fluxes. It is
important to note that this comparison provides an estimate
of the impact of damped eigenmodes on transport fluxes, but

the impact on energy balance and saturation could be much
larger as damped modes can provide an energy sink at all
wavenumbers including ky =0, whereas only fluctuations at
finite ky affect transport.

C. Phase pdfs

The eigenvector of a linear eigenmode defines cross-
phase relations between fields. Nonlinear cross phases in
saturated turbulence are the result of the interaction between
all excited eigenmodes. Heat flux is expressed in terms of the
cross phase between electrostatic potential and pressure fluc-
tuations, and so is dependent on the eigenmodes that make
up the fluctuations, as discussed in the previous section. We
examine pdfs of phase angles tan−1�Im�p��� /Re�p���� to
better understand the behavior of nonlinear cross phases and
their relation to damped eigenmode excitation.

A phase angle pdf is constructed by tracking �for differ-
ent wavenumbers� the number of instances in time when the
phase angle falls in different angular ranges. In addition, the
pdf can be intensity weighted, amplifying the probability by
a factor proportional to the instantaneous intensity, �2. This
serves to highlight regions �in time and k space� that are
important for transport and makes phase pdfs smoother.
However, it is unclear what information is eliminated during
this process. For instance, if damped eigenmode excitation is
associated with periods of low intensity, then intensity
weighting acts to filter out the damped eigenmode contribu-
tion to phase angle dynamics. We consider both weighted
and unweighted phase angle pdfs in this paper. Intensity
weighted pdfs are examined in Ref. 22 where nonlinear
phase pdfs are compared to the linear phase angles of the
unstable mode for CTEM turbulence. There is a close corre-
spondence between linear and nonlinear phase angles. In this
work, a correspondence is also observed between phase pdfs
and linear mode phase angles. However, the peak of the pdf
about the linear phase angle is broadened. While the width is
smaller than the spread �	 of the frequency spectrum, we
will show that it is consistent with the excitation of other
modes.

A long time simulation �2800 time steps corresponding
to t�vT /LT�=500–7500� was used to create phase angle pdfs.
The intensity weighted phase pdf at kx=0 as a function of ky

is shown in Fig. 11�a�. It is observed that the phase pdf is
peaked near the phase angle of the most unstable mode for
most wavenumbers. The exception is ky =0.05 where there is
a secondary peak that aligns with the linear phase angle and
a larger peak which is offset from the linear angle, as seen in
Fig. 11�b�. The larger peak may correspond to another mode
or it may reflect the net effect of multiple interacting modes.
Figure 12 shows two unweighted phase pdfs that are repre-
sentative of most phase pdfs. The phase pdfs have widths
that range from roughly 0.5 to 1.5 rad and also exhibit non-
Gaussian “tails” and “bumps.” While there is little in the
literature regarding phase pdfs, it is plausible that many of
these features are signatures of multiple mode excitation.
Linear theory defines a single phase angle for each eigen-
mode, not a peaked distribution of phase angles.

For nonlinear data, one would expect some nonlinear

FIG. 8. �Color online� A comparison of the quasilinear and true fluxes
during the linear growth phase and the transition from the linear to nonlinear
regime. At early times, the two fluxes are identical but diverge when non-
linear energy transfer excites damped eigenmodes.

FIG. 9. �Color online� A long time history of the quasilinear and true heat
fluxes. On average, the true flux is 64% of the quasilinear flux.
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broadening but it is unclear how large this effect would be. A
phase pdf with a finite width can be easily explained by the
interaction of multiple modes. Consider the interaction be-
tween a dominant mode �1 and another mode �2 with
smaller amplitude and different phase angle and frequency as
modeled by

� = �1e−i	1t + �2e−i	2t, �10�

p = �1e−i
1e−i	1t + �2e−i
2e−i	2t. �11�

The dominant and subdominant mode phase angles/
frequencies are represented by 
1 and 
2 /	1 and 	2, respec-
tively. Taking �2 /�1 as a small parameter, the phase angle,
tan−1�Im�p��� /Re�p���� can be expanded to first order in
�2 /�1,


nl = 
1 +
�2

�1

tan�
1�
1 + tan2�
1�

A�
1,
2,�	1 − 	2�t� , �12�

A�
1,
2,�	1 − 	2�t�

=
sin�
1 + �	1 − 	2�t� + sin�
2 + �	2 − 	1�t�

sin�
1�

−
cos�
1 + �	1 − 	2�t� + cos�
2 + �	2 − 	1�t�

cos�
1�
.

�13�

The nonlinear phase angle has a constant term �
1� and a
smaller amplitude term �proportional to �2 /�1� oscillating at
the beat frequency. This would manifest itself in a phase pdf

FIG. 10. �Color online� A comparison of the quasilinear and true fluxes at kx=0 as a function of ky �left� and kx=0.15 as a function of ky �right�. The
quasilinear approximation worsens as kx increases.

FIG. 11. �Color online� Left: Intensity weighted phase pdf at kx=0 as a function of ky. The line represents the linear phase angle. Right: Unweighted phase
pdf for the wavenumber kx=0, ky =.05. The vertical line represents the most unstable mode phase angle, which corresponds to a secondary peak in the phase
pdf.
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as a peak at the dominant phase angle with a width propor-
tional to the ratio of the mode amplitudes. This analysis ap-
plied to more than two modes would produce a similar result,
i.e., a pdf peaked at the dominant phase angle with a width
dependent on the relative mode amplitudes.

In order to develop more intuition regarding the structure
of phase angle pdfs, a simple modeling exercise was under-
taken. Heuristic signals for the electrostatic potential and
pressure were created to model the interaction of multiple
modes in creating a nonlinear phase angle. The electrostatic
potential is modeled by taking the electrostatic potential sig-
nal from a long time simulation for a single wavenumber
�kx=0, ky =0.15� near the peak of the spectrum in a nonlin-
ear GYRO simulation. This signal is divided into six sections
representing six linear eigenmodes,

� = �1 + ���2 + �3 + �4 + �5 + �6� , �14�

p = R1�1 + ��R2�2 + R3�3 + R4�4 + R5�5 + R6�6� . �15�

As in Eq. �5�, �1 represents the unstable eigenmode and the
remaining �i represent the damped eigenmodes. Each �i is
modeled by a time segment of the long time simulation data.
The damped eigenmodes are reduced in amplitude by the
factor �. The pressure signal is created by multiplying the
same mode signals ��i� by complex constants �Ri�, which
give them the correct phase angles �as calculated by GLF23�
for the different modes �Eq. �15��. A net phase angle is de-
termined from these heuristic pressure and potential signals
and a phase pdf is calculated. It is observed that the phase
pdf is peaked near the unstable mode phase angle for a wide
range of �. As � is increased, the phase pdf broadens and
other features �secondary peaks, bumps, and tails� become
more prominent. For each value of �, an energy ratio can be
calculated ��2�	i=2,6�i� /�1�. This energy ratio is the ratio of
the rate of energy dissipation �due to the damped modes� to
the energy input rate �from the instability�. The model phase
pdfs most closely match the true nonlinear pdf when the

energy ratio is between 0.20 and 0.44, i.e., the damped
modes are dissipating roughly 30% of the energy input by
the instability. This is consistent with the magnitude of the
effect of damped eigenmodes on transport fluxes as esti-
mated in the previous section.

IV. FLUCTUATIONS AT ZONAL WAVENUMBERS

Fluctuations at zonal wavenumbers �ky =0� are known to
be closely tied to saturation of ITG turbulence. It is often
stated that the dominant saturation mechanism is the shear-
ing of turbulent eddies to high radial wavenumber by zonal
flows. However, the shearing rate due to self-consistent zonal
flows is not likely to be high enough to account for the
drastic reduction in fluctuation levels associated with cou-
pling to zonal modes.15–17 It is important to distinguish be-
tween zonal flows �Rosenbluth and Hinton �RH�� and other
zonal fluctuations. RH zonal flows are 	=0, ky =0 fluctua-
tions which are linearly undamped in the absence of colli-
sions. There are other zonal modes which are linearly
damped. The best known of these is the GAM which has a
relatively high frequency and is linearly damped. The GAM
is easily identified in the nonlinear frequency spectrum. In
addition to the GAM, there are other eigenmodes with low
but finite frequency identified in both experiment32 and ana-
lytical treatments.9,33

Multiple zonal eigenmodes can be derived from both
kinetic theory and fluid theory. Gao presented a series of
damped zonal eigenmodes including the standard GAM and
a low frequency GAM. An infinite number of linear modes
can be derived from the gyrokinetic equation and it is plau-
sible that other low to zero frequency damped eigenmodes
exist which have not been identified or cataloged. The eigen-
mode solver in GLF23 identifies six damped eigenmodes at
ky =0. Two have low but finite frequencies and four others
have exactly zero real frequencies. There is reason to be
wary of the results of gyro-Landau fluid equations for zonal

FIG. 12. �Color online� Unweighted phase angle pdfs for kx=0.05, ky =0.1 �left� and kx=0, ky =0.15 �right�. The vertical lines represent the most unstable mode
phase angle. These phase pdfs are representative of many wavenumbers that exhibit widths ranging from 0.5 to 1.5 rad and non-Gaussian tails and bumps.

022311-11 Role of stable eigenmodes in gyrokinetic models… Phys. Plasmas 16, 022311 �2009�

Downloaded 25 Feb 2009 to 128.104.166.133. Redistribution subject to AIP license or copyright; see http://pop.aip.org/pop/copyright.jsp



modes11 but it is important to note that gyro-Landau fluid
equations indicate a series of low to zero frequency zonal
eigenmodes rather than a single zero frequency undamped
mode.

At finite ky, damped eigenmodes at zonal wavenumbers
can only be excited by nonlinear energy transfer. It has been
shown that energy transfer to zonal wavenumbers is the fa-
vored nonlinear transfer channel.4,34 As a result, the intensity
spectrum is dominated by zonal intensity. The amount of
intensity in zonal wavenumbers is large enough that even if
only a portion of the zonal energy is in linearly damped
zonal modes �as opposed to the undamped RH zonal flows�,
these damped eigenmodes could be the dominant energy
sink. This would be consistent with the observed intimate
connection between zonal mode excitation and saturation
while resolving the problem of the inadequate shearing rate
produced by self-consistent zonal flows.

In spite of the drawbacks of these mode derivations �Gao
used a different parameter regime and for GLF23 there are
questions about the closure at ky =0�, it is instructive to make
some qualitative comparisons of the mode frequencies with
the nonlinear frequency spectrum at ky =0. The nonlinear fre-
quency spectrum at ky =0 is characterized by a sharp peak at
zero frequency and a secondary peak at the GAM frequency.
Although the spectrum is sharply peaked at 	=0, there is a
finite width to the spectrum with significant intensity extend-
ing off axis. Both the low frequency Gao mode and to a
lesser extent the finite frequency GLF23 modes are in ranges
of significant intensity in the nonlinear frequency spectrum
as shown in Fig. 13. The damping rates of these modes are
on the same order of magnitude as the peak ITG growth rate

�ITG. If these �and/or other similar� modes make up part of
the zonal fluctuations, then these low frequency damped
modes are potentially a potent energy sink. Using U= p2

+ �1+k2�� as an approximate surrogate for a conserved gy-
rokinetic fluctuation energy, some rough energy balance es-
timates can be made. In saturation, zonal fluctuations ac-
count for 56% of the total fluctuation energy. For a rough
estimate of energy balance it is reasonable to assume that the
damping rate of a zonal damped eigenmode is comparable to
the peak growth rate of the instability. In addition, we make
a conservative estimate that 70% of the nonzonal energy is
on the unstable manifold in regions of instability. The re-
maining 30% is subject to either high-k damping �intrinsic or
numerical� or damping due to damped eigenmode excitation
in the region of instability. We assume that the finite ky

damping rates are also on the order of �ITG. Energy balance
can then be written

0.7�ITGUdw − 0.3�ITGUdw − �ITG�Uzm

= 0.7�ITGUdw − 0.3�ITGUdw − �ITG�1.3Udw

= 0,

where Udw is the drift wave �nonzonal� fluctuation energy,
Uzm is the zonal fluctuation energy, and � is the percentage
of the zonal fluctuation energy associated with damped zonal
modes. With these estimates, energy balance is achieved for
�=0.15, i.e., only 15% of the zonal fluctuations must be low
frequency damped modes in order to account for saturation.
Although we have made very coarse estimates, it is clear that
only a portion of the zonal fluctuations must be linearly
damped in order for this to be a very significant energy sink.

The nonlinear cross phase of p�� at ky =0 shows a strong
signature of multiple mode behavior. In Fig. 14, the phase
pdf is peaked near ��, the phase angle of the standard RH
zonal flow. In addition, there is significant probability in the
entire angular domain. The cause of this broad pdf is made
apparent by observing the temporal behavior of the phase
angle as is seen in Fig. 15. For periods of time, the phase
angle fixes at �� but in other periods, it rotates slowly in
time. There is a striking resemblance between this phase
angle behavior and the behavior observed in the reduced ITG
model where there are three competing modes with compa-
rable amplitudes.3 For these parameters �q=1.4� the standard
GAM amplitude is small enough that it is unlikely to cause
such a large change in phase angle dynamics. To verify this,
a digital filter was used to decrease the GAM contribution
and the resulting change in phase angle behavior was barely
discernible. It is likely that two or more low frequency zonal
modes are competing at ky =0 and the time scale of phase
rotation is related to the beat frequencies of these modes.
More recent results, while not ruling out the possibility of
zonal modes providing a direct energy sink, indicate that
their most important role may be in coupling to damped
eigenmodes at finite ky.

We have recently become aware of concurrent work28

that suggests that zonal wavenumbers do not provide a large
energy sink for a mixed ITG/TEM GYRO simulation. In that
work, diagnostics for nonlinear transfer of conserved entropy
�or turbulent energy� indicate that energy is not preferentially

FIG. 13. Nonlinear frequency spectrum for ky =0, kx=0.1. The vertical lines
represent known low frequency damped eigenmodes whose damping rates
are comparable to the maximum ITG growth rate.
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transferred to zonal modes but rather uniformly transferred to
all stable wavenumbers. That work also concludes that “turn-
ing off Landau damping” has little effect on saturation levels.
These conclusions and the diagnostics leading to them merit
further scrutiny. We foresee developing and implementing a
gyrokinetic diagnostic like that described above in Sec. II
that directly measures the rate at which energy from the
background is injected into or removed from fluctuations at
finite amplitude. With such diagnostics the extent to which
damped eigenmodes at zonal wavenumbers provide a sink to
fluctuation energy can be determined directly.

V. SUMMARY AND CONCLUSIONS

We have presented results from gyrokinetic simulations
of ITG turbulence, which suggest that multiple stable eigen-
modes are excited nonlinearly to amplitudes sufficient to sig-
nificantly impact saturation and transport. Current gyroki-
netic codes are initial value codes and thus are unable to
provide direct information about anything more than the
most unstable mode. As a result, we have applied less direct
tests to gyrokinetic simulation data to identify signatures of
multiple eigenmode behavior. These tests fall into three cat-
egories: �1� frequency spectra, �2� comparisons of quasilinear
and nonlinear fluxes, and �3� phase relations. The gyro-
Landau fluid model from GLF23 was used to solve for fre-
quency and phase information for multiple modes and these
data were used in conjunction with GYRO simulation data in
applying these tests. The results are summarized as follows.

For fluctuations at ky �0, we have the following:

�1� Frequency spectra: The width of the nonlinear frequency
spectrum tracks the spread in damped mode frequencies
�as given by GLF23� very closely. Both the nonlinear
spectrum and the damped mode frequencies spread as ky

increases. In addition, frequency spectra are found to be
much wider than what would be expected simply from
nonlinear broadening about the frequency of the most
unstable eigenmode. In saturation this width should be
of the order of the linear growth rate if damped eigen-
modes are not excited. Scans in LT indicate that the
width of the spectrum does not scale with the linear
growth rate or zonal flow velocity �possible Doppler
shift� but changes only slightly for a wide range of LT.
This is consistent with the spread in linear mode fre-
quencies which is also only weakly sensitive to changes
in LT. We conclude that much of the intensity in the
nonlinear frequency spectrum is a manifestation of
damped eigenmode excitation.

�2� Transport fluxes: Quasilinear estimates of transport
fluxes implicitly assume that transport is determined
solely by the most unstable mode. Stable eigenmodes
generally reduce fluxes and often provide an inward
contribution to fluxes. It was found that quasilinear
fluxes consistently overestimate the true nonlinear flux.
At kx=0 the true flux is 79% of the quasilinear flux and
the quasilinear estimate worsens as kx increases, so that
the total flux is 64% of the total quasilinear flux. This
gives an estimate of the magnitude of the effect of
damped eigenmodes with ky �0.

�3� Phase relations: Linear eigenmodes are associated with
characteristic phase relations. It was found that phase
angle pdfs are peaked near the unstable mode phase
angle and have a finite width and non-Gaussian features
�bumps and tails� that indicate multiple mode behavior.
A simple model was used to demonstrate how a domi-
nant mode would interact with smaller amplitude modes
to create a phase pdf centered at the dominant mode
phase angle with a width proportional to the relative
amplitudes of the modes. It was shown that the phase
pdf at the wavenumber at the peak of the intensity spec-
trum has a width that is consistent with a damped mode

FIG. 14. �Color online� p�� phase angle pdf for ky =0. The pdf at kx=0.05
shows significant probability over the entire range of angles.

FIG. 15. Time history of the phase angle for wavenumber ky =0, kx=.05.
The phase angle fixes temporarily at �� but also rotates for long periods of
time, indicating the interaction of multiple eigenmodes. Digitally filtering
out the high frequency GAM contribution does not significantly change the
phase angle dynamics suggesting that the important interacting modes are
not GAMs but low frequency modes.

022311-13 Role of stable eigenmodes in gyrokinetic models… Phys. Plasmas 16, 022311 �2009�

Downloaded 25 Feb 2009 to 128.104.166.133. Redistribution subject to AIP license or copyright; see http://pop.aip.org/pop/copyright.jsp



effect of roughly 30%. This is consistent with the qua-
silinear flux estimate.

For fluctuations at ky =0, we presented p�� cross-phase
data that indicate the excitation of multiple eigenmodes at
zonal wavenumbers. The phase angle pdf is peaked at the
phase angle of the RH zonal flow but also shows significant
probability in the entire angular range. The cross-phase angle
is fixed at �� for periods of time but intermittently transi-
tions to rotating behavior for long periods of time. This be-
havior remains even when the high frequency GAM contri-
bution is digitally filtered out of the spectrum, suggesting
that zonal fluctuations are a superposition of the standard
zonal flow with one or more other zonal modes. We dis-
cussed known damped zonal modes whose frequencies are
consistent with the zonal frequency spectrum and whose
damping rates make them excellent candidates for being the
dominant energy sink of ITG turbulence. Rough energy bal-
ance estimates demonstrate that only a small part of the
zonal fluctuations need to be damped in order for this to be a
significant energy sink. In addition, recent results indicate the
possibility that zonal modes may be instrumental in exciting
damped eigenmodes at nonzonal wavenumbers.

In conclusion, while the tests we have applied to gyro-
kinetic simulation data have been, of necessity, somewhat
indirect, the results tell a consistent story regarding damped
eigenmode excitation. Consideration of frequency spectra,
phase behavior, and quasilinear flux estimates all indicate
that damped eigenmodes are important in saturation and
transport for ITG turbulence. The combined weight of these
tests lends credence to the claim that damped eigenmodes are
crucial to a complete understanding of microturbulence.

It is important to note that we have exclusively consid-
ered CYCLONE-base case ITG turbulence. It is likely that
there are other parameter regimes for ITG turbulence in ad-
dition to turbulence driven by other instabilities for which
damped eigenmodes are even more important to the dynam-
ics. Results from fluid models indicate that damped eigen-
modes are critical in CTEM turbulence where saturation is
tied to zonal density fluctuations. It is plausible that finite ky

damped eigenmodes are the primary energy sink for ETG
turbulence since zonal flows are less important than in ITG
turbulence.

The deleterious effect of turbulent transport on plasma
confinement is the primary reason for studying microturbu-
lence. We estimate that damped eigenmodes cause roughly a
35% reduction in transport fluxes. An effect of this magni-
tude should be understood and added to the concepts that
researchers use to inform their intuition regarding turbulent
transport. In addition, while there is no reason to assume that
existing codes fail to resolve important damped eigenmodes,
this should be verified and taken into consideration when
performing simulations.

The method by which saturation is achieved is a crucial
aspect of instability-driven turbulence. The effect of damped
eigenmodes on saturation is possibly much larger than the
effect on transport since, in addition to the dissipation at
finite ky, damped zonal eigenmodes have the potential to be
the dominant energy sink. It is clear that zonal fluctuations

are tied to the saturation of ITG turbulence. Zonal flows
cause shearing of drift waves and energy transfer to high kx,
but this effect is not large unless shearing rates are consider-
ably larger than the turbulent correlation rate. We suggest the
possibility of a different paradigm for how zonal fluctuations
could affect saturation. Zonal fluctuations are a superposition
of multiple eigenmodes—the weakly damped RH zonal flow
and other low frequency linearly damped zonal modes that
are the primary energy sink.

ACKNOWLEDGMENTS

This research was performed under an appointment to
the U.S. Department of Energy, Fusion Energy Sciences Fel-
lowship Program, administered by the Oak Ridge Institute
for Science and Education under Contract No. DE-AC05-
060R23100 between the U.S. Department of Energy and Oak
Ridge Associated Universities.

1See Table 1 in A. J. Brizard and T. S. Hahm, Rev. Mod. Phys. 79, 421
�2007�, showing saturation theories for a variety of instabilities. None
invoke damped eigenmodes as a direct sink of energy.

2D. A. Baver, P. W. Terry, R. Gatto, and E. Fernandez, Phys. Plasmas 9,
3318 �2002�.

3P. W. Terry, D. A. Baver, and S. Gupta, Phys. Plasmas 13, 022307 �2006�.
4R. Gatto, P. W. Terry, and D. A. Baver, Phys. Plasmas 13, 022306 �2006�.
5P. W. Terry and R. Gatto, Phys. Plasmas 13, 062309 �2006�.
6P. W. Terry, D. R. Hatch, and J.-H. Kim, Bull. Am. Phys. Soc. 53, 108
�2008�.

7Z. Lin, T. S. Hahm, W. W. Lee, W. M. Tang, and R. B. White, Science
281, 1835 �1998�.

8N. Winsor, J. L. Johnson, and J. M. Dawson, Phys. Fluids 11, 2448
�1968�.

9Z. Gao, K. Itoh, H. Sanuki, and J. Q. Dong, Phys. Plasmas 13, 100702
�2006�.

10P. H. Diamond, S.-I. Itoh, K. Itoh, and T. S. Hahm, Plasma Phys. Con-
trolled Fusion 47, R35 �2005�.

11M. N. Rosenbluth and F. Hinton, Phys. Rev. Lett. 80, 724 �1998�.
12Z. Lin, T. S. Hahm, W. W. Lee, W. M. Tang, and P. H. Diamond, Phys.

Rev. Lett. 83, 3645 �1999�.
13R. E. Waltz, R. L. Dewar, and X. Garbet, Phys. Plasmas 5, 1784 �1998�.
14H. Biglari, P. H. Diamond, and P. W. Terry, Phys. Fluids B 2, 1 �1990�.
15W. M. Nevins, J. Candy, S. Cowley, T. Dannert, A. Dimits, W. Dorland, C.

Estrada-Mila, G. W. Hammett, F. Jenko, M. J. Pueschel, and D. E.
Shumaker, Phys. Plasmas 13, 122306 �2006�.

16G. R. McKee, R. J. Fonck, M. Jakubowski, K. H. Burrell, K. Hallatschek,
R. A. Moyer, W. Nevins, D. L. Rudakov, and X. Xu, Plasma Phys. Con-
trolled Fusion 45, A477 �2003�.

17Y. Z. Zhang and S. M. Majahan, Phys. Fluids B 4, 1385 �1992�.
18T. S. Hahm, M. A. Beer, Z. Lin, G. W. Hammett, W. W. Lee, and W. M.

Tang, Phys. Plasmas 6, 922 �1999�.
19P. W. Terry and D. A. Baver, Phys. Rev. Lett. 89, 205001 �2002�.
20P. W. Terry, Phys. Rev. Lett. 93, 235004 �2004�.
21J. Candy and R. E. Waltz, J. Comput. Phys. 186, 545 �2003�.
22T. Dannert and F. Jenko, Phys. Plasmas 12, 072309 �2005�.
23F. Jenko, W. Dorland, M. Kotschenreuther, and B. N. Rogers, Phys.

Plasmas 7, 1904 �2000�.
24M. Kammerer, F. Merz, and F. Jenko, Phys. Plasmas 15, 052102 �2008�.
25R. E. Waltz, G. M. Staebler, W. Dorland, G. W. Hammett, and M.

Kotschenreuther, Phys. Plasmas 4, 2482 �1997�.
26A. M. Dimits, G. Bateman, M. A. Beer, B. I. Cohen, W. Dorland, G. W.

Hammett, C. Kim, J. E. Kinsey, M. Kotschenreuther, A. H. Kritz, L. L.
Lao, J. Mandrekas, W. M. Nevins, S. E. Parker, A. J. Redd, D. E.
Shumaker, R. Sydora, and J. Weiland, Phys. Plasmas 7, 969 �2000�.

27G. S. Lee and P. H. Diamond, Phys. Fluids 29, 3291 �1986�.

022311-14 Hatch et al. Phys. Plasmas 16, 022311 �2009�

Downloaded 25 Feb 2009 to 128.104.166.133. Redistribution subject to AIP license or copyright; see http://pop.aip.org/pop/copyright.jsp

http://dx.doi.org/10.1103/RevModPhys.79.421
http://dx.doi.org/10.1063/1.1491958
http://dx.doi.org/10.1063/1.873331
http://dx.doi.org/10.1063/1.2167309
http://dx.doi.org/10.1063/1.2212403
http://dx.doi.org/10.1126/science.281.5384.1835
http://dx.doi.org/10.1063/1.1691835
http://dx.doi.org/10.1063/1.2359722
http://dx.doi.org/10.1088/0741-3335/47/5/R01
http://dx.doi.org/10.1088/0741-3335/47/5/R01
http://dx.doi.org/10.1103/PhysRevLett.80.724
http://dx.doi.org/10.1103/PhysRevLett.83.3645
http://dx.doi.org/10.1103/PhysRevLett.83.3645
http://dx.doi.org/10.1063/1.872847
http://dx.doi.org/10.1063/1.859529
http://dx.doi.org/10.1063/1.2402510
http://dx.doi.org/10.1088/0741-3335/45/12A/031
http://dx.doi.org/10.1088/0741-3335/45/12A/031
http://dx.doi.org/10.1063/1.860095
http://dx.doi.org/10.1063/1.873331
http://dx.doi.org/10.1103/PhysRevLett.89.205001
http://dx.doi.org/10.1103/PhysRevLett.93.235004
http://dx.doi.org/10.1016/S0021-9991(03)00079-2
http://dx.doi.org/10.1063/1.1947447
http://dx.doi.org/10.1063/1.874014
http://dx.doi.org/10.1063/1.874014
http://dx.doi.org/10.1063/1.2909618
http://dx.doi.org/10.1063/1.872228
http://dx.doi.org/10.1063/1.873896
http://dx.doi.org/10.1063/1.865846


28R. E. Waltz and C. Holland, Phys. Plasmas 15, 122503 �2008�.
29J. E. Kinsey, G. M. Staebler, and R. E. Waltz, Phys. Plasmas 12, 052503

�2005�.
30N. Mattor and P. W. Terry, Phys. Fluids B 4, 1126 �1992�.
31W. Dorland, F. Jenko, M. Kotschenreuther, and B. N. Rogers, Phys. Rev.

Lett. 85, 5579 �2000�.
32A. Fujisawa, A. Shimizu, H. Nakano, S. Ohsima, K. Itoh, H. Iguchi, K.

Matsuoka, S. Okamura, S.-I. Itoh, and P. H. Diamond, Plasma Phys. Con-
trolled Fusion 48, A365 �2006�.

33K. Itoh, S.-I. Itoh, P. H. Diamond, T. S. Hahm, A. Fujisawa, G. R. Tynan,
M. Yagi, and Y. Nagashima, Phys. Plasmas 13, 055502 �2006�.

34C. Holland, P. H. Diamond, S. Champeaux, E. Kim, O. Gurcan, M. N.
Rosenbluth, G. R. Tynan, N. Crocker, W. Nevins, and J. Candy, Nucl.
Fusion 43, 761 �2003�.

022311-15 Role of stable eigenmodes in gyrokinetic models… Phys. Plasmas 16, 022311 �2009�

Downloaded 25 Feb 2009 to 128.104.166.133. Redistribution subject to AIP license or copyright; see http://pop.aip.org/pop/copyright.jsp

http://dx.doi.org/10.1063/1.3033206
http://dx.doi.org/10.1063/1.1886826
http://dx.doi.org/10.1063/1.860121
http://dx.doi.org/10.1103/PhysRevLett.85.5579
http://dx.doi.org/10.1103/PhysRevLett.85.5579
http://dx.doi.org/10.1088/0741-3335/48/5A/S36
http://dx.doi.org/10.1088/0741-3335/48/5A/S36
http://dx.doi.org/10.1063/1.2178779
http://dx.doi.org/10.1088/0029-5515/43/8/319
http://dx.doi.org/10.1088/0029-5515/43/8/319

